Modeling relationship between sea ice change and sea level rise

Let’s look at modeling the effect of global sea ice on global sea level

## 
## Call:
## lm(formula = mean_sea_level ~ global_ice + poly(global_ice, 2), 
##     data = sea_levelandice.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.263 -0.762 -0.203  0.531  2.495 
## 
## Coefficients: (1 not defined because of singularities)
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            15.868      5.545    2.86   0.0075 **
## global_ice             -0.454      0.285   -1.59   0.1212   
## poly(global_ice, 2)1       NA         NA      NA       NA   
## poly(global_ice, 2)2    1.672      1.040    1.61   0.1181   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.04 on 31 degrees of freedom
## Multiple R-squared:  0.142,  Adjusted R-squared:  0.0864 
## F-statistic: 2.56 on 2 and 31 DF,  p-value: 0.0934
## 
## Call:
## lm(formula = mean_sea_level ~ global_ice_change + poly(global_ice_change, 
##     2), data = sea_levelandice.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.859 -0.656 -0.208  0.559  2.352 
## 
## Coefficients: (1 not defined because of singularities)
##                             Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                    7.037      0.170   41.31 <0.0000000000000002 ***
## global_ice_change              0.116      0.210    0.55              0.5839    
## poly(global_ice_change, 2)1       NA         NA      NA                  NA    
## poly(global_ice_change, 2)2    2.866      0.993    2.89              0.0071 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.993 on 31 degrees of freedom
## Multiple R-squared:  0.218,  Adjusted R-squared:  0.167 
## F-statistic: 4.32 on 2 and 31 DF,  p-value: 0.0222

Suprisingly, aside from a significant quadratic effect of change in sea ice extent on global sea level change, we don’t see and significant effects of sea ice extent on global sea level change, something I did not expect. What might work better in the future is to instead calculate the mean rate of change from year to year (difference in mean global temperature) instead of this running total. Doing so may show different trends.

Monthly sea ice and temperature

Let’s construct some linear models comparing global temperature change with global sea level.

## 
## Call:
## lm(formula = global_ice ~ Mean, data = ice_temp_gis.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.227 -2.568  0.848  2.146  4.510 
## 
## Coefficients:
##             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)   24.383      0.287   85.01 < 0.0000000000000002 ***
## Mean          -2.571      0.546   -4.71            0.0000033 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.75 on 452 degrees of freedom
## Multiple R-squared:  0.0468, Adjusted R-squared:  0.0447 
## F-statistic: 22.2 on 1 and 452 DF,  p-value: 0.00000327
## 
## Call:
## lm(formula = global_anomaly ~ Mean, data = ice_temp_gis.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8921 -0.3729  0.0605  0.4468  1.6615 
## 
## Coefficients:
##             Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)   0.6942     0.0694    10.0 <0.0000000000000002 ***
## Mean         -1.6366     0.1319   -12.4 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.666 on 452 degrees of freedom
## Multiple R-squared:  0.254,  Adjusted R-squared:  0.252 
## F-statistic:  154 on 1 and 452 DF,  p-value: <0.0000000000000002

From the Q-Q plot, we can see that the residuals do not meet the assumption of being normally distributed in the model comparing temperature with sea ice extent. This suggests we should try alternative models, likely nonlinear, but for the sake of this project, we will not. However, we do see in the case of sea ice anomalies, a much stronger linear trend between global temperature and global sea ice anomalies, indication that increasing temperature is causing more significant (greater magnitude) monthly declines in sea ice extent.

Spatial plots of sea ice

No linear models developed for this stage, just spatial plots